Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 122(49): 11561-11570, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30346755

RESUMO

In magnetic tweezers experiments, we observe that torsional DNA buckling rates and transition state distances are insensitive to base-pairing defects. This is surprising because defects are expected to kink DNA and lower the energy of a localized loop. Nonetheless, base-pairing defects lead to pinning of buckled structures at the defects, which may be important for DNA repair in vivo. We find that the decrease in entropy from pinning roughly balances the decrease in bending energy, explaining why defects have little effect on buckling rates. Our data are generally consistent with elastic rod theory, which predicts that the transition state structure for torsional buckling is a localized wave with a specific shape ("soliton"). The transition state soliton decays to a metastable looped intermediate ("curl") that is separated from the final, fully buckled state by a second, low energy barrier. DNAs with base mismatch defects buckle at lower torque, where elastic rod theory predicts the loop structure is more stable, and manifest an intermediate buckling structure consistent with such a loop. We estimate that, under our high force, high salt experimental conditions, the soliton barrier is approximately 10 kB T and, to reach this transition state from the unbuckled state, the system torque instantaneously decreases by approximately 1 pN·nm for DNA with or without a small defect.


Assuntos
DNA/química , Pinças Ópticas , Termodinâmica , Cinética
2.
Phys Rev E ; 97(2-1): 022416, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29548184

RESUMO

We present a statistical-mechanical model for stretched twisted double-helix DNA, where thermal fluctuations are treated explicitly from a Hamiltonian without using any scaling hypotheses. Our model applied to defect-free supercoiled DNA describes the coexistence of multiple plectoneme domains in long DNA molecules at physiological salt concentrations (≈0.1M Na^{+}) and stretching forces (≈1pN). We find a higher (lower) number of domains at lower (higher) ionic strengths and stretching forces, in accord with experimental observations. We use our model to study the effect of an immobile point defect on the DNA contour that allows a localized kink. The degree of the kink is controlled by the defect size, such that a larger defect further reduces the bending energy of the defect-facilitated kinked end loop. We find that a defect can spatially pin a plectoneme domain via nucleation of a kinked end loop, in accord with experiments and simulations. Our model explains previously reported magnetic tweezer experiments [A. Dittmore et al., Phys. Rev. Lett. 119, 147801 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.147801] showing two buckling signatures: buckling and "rebuckling" in supercoiled DNA with a base-unpaired region. Comparing with experiments, we find that under 1 pN force, a kinked end loop nucleated at a base-mismatched site reduces the bending energy by ≈0.7 k_{B}T per unpaired base. Our model predicts the coexistence of three states at the buckling and rebuckling transitions, which warrants new experiments.


Assuntos
DNA Super-Helicoidal/química , Sais/química , Torque
3.
Adv Funct Mater ; 28(33)2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30686957

RESUMO

Fluorescent nanodiamonds (FNDs) are promising bio-imaging probes compared with other fluorescent nanomaterials such as quantum dots, dye-doped nanoparticles, and metallic nanoclusters, due to their remarkable optical properties and excellent biocompatibility. Nevertheless, they are prone to aggregation in physiological salt solutions, and modifying their surface to conjugate biologically active agents remains challenging. Here, inspired by the adhesive protein of marine mussels, we demonstrate encapsulation of FNDs within a polydopamine (PDA) shell. These PDA surfaces are readily modified via Michael addition or Schiff base reactions with molecules presenting thiol or nitrogen derivatives. We describe modification of PDA shells by thiol terminated poly(ethylene glycol) (PEG-SH) molecules to enhance colloidal stability and biocompatibility of FNDs. We demonstrate their use as fluorescent probes for cell imaging; we find that PEGylated FNDs are taken up by HeLa cells and mouse bone marrow-derived dendritic cells and exhibit reduced nonspecific membrane adhesion. Furthermore, we demonstrate functionalization with biotin-PEG-SH and perform long-term high-resolution single-molecule fluorescence based tracking measurements of FNDs tethered via streptavidin to individual biotinylated DNA molecules. Our robust polydopamine encapsulation and functionalization strategy presents a facile route to develop FNDs as multifunctional labels, drug delivery vehicles, and targeting agents for biomedical applications.

4.
Phys Rev Lett ; 119(14): 147801, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-29053317

RESUMO

We present a method of detecting sequence defects by supercoiling DNA with magnetic tweezers. The method is sensitive to a single mismatched base pair in a DNA sequence of several thousand base pairs. We systematically compare DNA molecules with 0 to 16 adjacent mismatches at 1 M monovalent salt and 3.6 pN force and show that under these conditions, a single plectoneme forms and is stably pinned at the defect. We use these measurements to estimate the energy and degree of end-loop kinking at defects. From this, we calculate the relative probability of plectoneme pinning at the mismatch under physiologically relevant conditions. Based on this estimate, we propose that DNA supercoiling could contribute to mismatch and damage sensing in vivo.


Assuntos
DNA Super-Helicoidal/química , DNA/química , Pareamento Incorreto de Bases , Pareamento de Bases , Sequência de Bases , Conformação de Ácido Nucleico
5.
Nucleic Acids Res ; 45(16): 9611-9624, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934496

RESUMO

Although bacterial gyrase and topoisomerase IV have critical interactions with positively supercoiled DNA, little is known about the actions of these enzymes on overwound substrates. Therefore, the abilities of Bacillus anthracis and Escherichia coli gyrase and topoisomerase IV to relax and cleave positively supercoiled DNA were analyzed. Gyrase removed positive supercoils ∼10-fold more rapidly and more processively than it introduced negative supercoils into relaxed DNA. In time-resolved single-molecule measurements, gyrase relaxed overwound DNA with burst rates of ∼100 supercoils per second (average burst size was 6.2 supercoils). Efficient positive supercoil removal required the GyrA-box, which is necessary for DNA wrapping. Topoisomerase IV also was able to distinguish DNA geometry during strand passage and relaxed positively supercoiled substrates ∼3-fold faster than negatively supercoiled molecules. Gyrase maintained lower levels of cleavage complexes with positively supercoiled (compared with negatively supercoiled) DNA, whereas topoisomerase IV generated similar levels with both substrates. Results indicate that gyrase is better suited than topoisomerase IV to safely remove positive supercoils that accumulate ahead of replication forks. They also suggest that the wrapping mechanism of gyrase may have evolved to promote rapid removal of positive supercoils, rather than induction of negative supercoils.


Assuntos
DNA Girase/metabolismo , DNA Topoisomerase IV/metabolismo , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , Bacillus anthracis/enzimologia , DNA Girase/química , DNA Topoisomerase IV/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo
6.
Proc Natl Acad Sci U S A ; 113(30): 8436-41, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27402741

RESUMO

Fibrillar collagen, an essential structural component of the extracellular matrix, is remarkably resistant to proteolysis, requiring specialized matrix metalloproteinases (MMPs) to initiate its remodeling. In the context of native fibrils, remodeling is poorly understood; MMPs have limited access to cleavage sites and are inhibited by tension on the fibril. Here, single-molecule recordings of fluorescently labeled MMPs reveal cleavage-vulnerable binding regions arrayed periodically at ∼1-µm intervals along collagen fibrils. Binding regions remain periodic even as they migrate on the fibril, indicating a collective process of thermally activated and self-healing defect formation. An internal strain relief model involving reversible structural rearrangements quantitatively reproduces the observed spatial patterning and fluctuations of defects and provides a mechanism for tension-dependent stabilization of fibrillar collagen. This work identifies internal-strain-driven defects that may have general and widespread regulatory functions in self-assembled biological filaments.


Assuntos
Matriz Extracelular/metabolismo , Colágenos Fibrilares/metabolismo , Metaloproteinases da Matriz/metabolismo , Tendões/metabolismo , Animais , Matriz Extracelular/química , Colágenos Fibrilares/química , Metaloproteinases da Matriz/química , Fenômenos Mecânicos , Ligação Proteica , Proteólise , Ratos , Imagem Individual de Molécula/métodos , Cauda
7.
J Am Chem Soc ; 136(16): 5974-80, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24694039

RESUMO

Ligand associations play a significant role in biochemical processes, typically through stabilizing a particular conformation of a folded biomolecule. Here, we demonstrate the ability to measure the changes in the number of ligands associated with a single, stretched biomolecule as it undergoes a conformational change. We do this by combining thermodynamic theory with single-molecule measurements that directly track biomolecular conformation. We utilize this technique to determine the changes in the ionic atmosphere of a DNA hairpin undergoing a force-destabilized folding transition. We find that the number of counterions liberated upon DNA unfolding is a nonmonotonic function of the monovalent salt concentration of the solution, contrary to predictions from common nucleic acid models. This demonstrates that previously unobserved phenomena can be measured with our ligand counting approach.


Assuntos
DNA/química , DNA/genética , Sequências Repetidas Invertidas , Conformação de Ácido Nucleico/efeitos dos fármacos , DNA/metabolismo , Ligantes , Termodinâmica
8.
Rev Sci Instrum ; 84(4): 044301, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23635212

RESUMO

The magnetic tweezer is a single-molecule instrument that can apply a constant force to a biomolecule over a range of extensions, and is therefore an ideal tool to study biomolecules and their interactions. However, the video-based tracking inherent to most magnetic single-molecule instruments has traditionally limited the instrumental resolution to a few nanometers, above the length scale of single DNA base-pairs. Here we have introduced superluminescent diode illumination and high-speed camera detection to the magnetic tweezer, with graphics processing unit-accelerated particle tracking for high-speed analysis of video files. We have demonstrated the ability of the high-speed magnetic tweezer to resolve particle position to within 1 Å at 100 Hz, and to measure the extension of a 1566 bp DNA with 1 nm precision at 100 Hz in the presence of thermal noise.


Assuntos
DNA/química , Magnetismo/instrumentação , Magnetismo/métodos , Modelos Teóricos , Gravação em Vídeo/instrumentação , Gravação em Vídeo/métodos
9.
Phys Rev Lett ; 107(14): 148301, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22107239

RESUMO

A polymer must reach a certain size to exhibit significant excluded-volume interactions and adopt a swollen random-walk configuration. We show that single-molecule measurements can sense the onset of swelling by modulating the effective chain size with force: as the force is reduced from a large value, the polymer is first highly aligned, then a Gaussian coil, then finally a swollen chain, with each regime exhibiting a distinct elasticity. We use this approach to quantify the structural parameters of poly(ethylene glycol) and show that they vary in the expected manner with changes in solvent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...